802 research outputs found

    Design of a high-speed UV-transmitting camera for the Keck LRIS

    Get PDF
    Preliminary optical designs have been developed for the blue channel of the Low Resolution Imaging Spectrograph (LRIS) for the Keck Ten Meter Telescope. This paper discusses the configuration- driving factors and performance of the designs, as well as coating and fabrication issues

    Improved u′g′r′i′z′u'g'r'i'z' to UBVRCICUBVR_CI_C Transformation Equations for Main Sequence Stars

    Get PDF
    We report improved transformation equations between the u′g′r′i′z′u'g'r'i'z' and UBVRCICUBVR_CI_C photometric systems. Although the details of the transformations depend on luminosity class, we find a typical rms scatter on the order of 0.001 magnitude if the sample is limited to main sequence stars. Furthermore, we find an accurate transformation requires complex, multi-color dependencies for the bluer bandpasses. Results for giant stars will be reported in a subsequent paper.Comment: 7 pages, 8 figure

    Excited-state Equilibration Over 30 Angstrom In A Platinum(ii) Quinolinolate-bridge-platinum(ii) Porphyrin Complex

    Get PDF
    Long-range triplet excited-state equilibration occurs over a nanometric distance between platinum(II) 8-quinolinolate ((3)Ptq(2) = 1.87 eV) and platinum(II) tetraphenylporphyrin ((PtTPP)-Pt-3 = 1.89 eV). The equilibrium is mediated by a fluorene-thiophene-fluorene bridge ((FTF)-F-3 = 1.92 eV) and is characterized by a double-exponential decay (tau(1) = 39 +/- 4 ps; tau(2) = 351 +/- 15 ps) that suggests the participation of three separate excited states : (3)Ptq(2), (FTF)-F-3, and 3PtTPP, respectively. Numerical simulation of the dual equilibrium allowed for estimation of the individual rate constants for each of the reversible steps (k(ET) = 3.9 x 10(9)-4.1 x 10(10) s(-1)). As a result of rapid triplet-state equilibration, almost 50% of the excited-state energy is directed from the PtTPP chromophore toward Ptq2, in spite of a small endothermic barrier (0.03 eV)

    Leaf-Level Gas Exchange and Foliar Chemistry of Common Old-Field Species Responding to Warming and Precipitation Treatments.

    Get PDF
    We investigated the shifts in plant carbon (C) and water dynamics by measuring rates of photosynthesis, transpiration, and instantaneous water use efficiency (WUE) in three common species of “old-field” plants—two C3 forb species (Plantago lanceolata and Taraxacum officinale) and one C3 grass species (Elymus repens)—under 12 experimentally altered temperature and precipitation regimes at the Boston Area Climate Experiment (BACE) in Waltham, Massachusetts. We also measured shifts in foliar C and nitrogen (N) content to determine possible changes in plant C/nutrient balance. We hypothesized that the warming treatment would cause an increase in photosynthesis rates, unless water was limiting; therefore, we expected an interactive effect of warming and precipitation treatments. We found that warming and drought reduced leaf-level photosynthesis most dramatically when environmental or seasonal conditions produced soils that were already dry. In general, the plants transpired fastest when soils were wet and slowest when soils were dry. Drought treatments increased WUE relative to plants in the ambient and wet treatments but only during the driest and warmest background conditions. Leaf N concentration increased with warming, thereby indicating that future warming may cause some plants to take up more soil N and/or allocate more N to their leaves, possibly as consequences of increased nutrient availability. There were no significant interactive effects of the warming and precipitation treatments together across all seasons, indicating that responses were not synergistic or ameliorative

    The Wide Field Spectrograph (WiFeS)

    Full text link
    This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent thoughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320-950 nm wavelength region. It provides a 25x38 arcsec. field with 0.5 arcsec. sampling along each of twenty five 38X1 arcsec slitlets. The output format is optimized to match the 4096x4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of "interleaved nod-and-shuffle" will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) > 30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.Comment: Accepted for publication in Astrophysics & Space Science, 16 pages, 14 figure

    Repurposing environmental DNA samples—detecting the western pearlshell (Margaritifera falcata) as a proof of concept

    Get PDF
    Information on the distribution of multiple species in a common landscape is fundamental to effective conservation and management. However, distribution data are expensive to obtain and often limited to high-profile species in a system. A recently developed technique, environmental DNA (eDNA) sampling, has been shown to be more sensitive than traditional detection methods for many aquatic species. A second and perhaps underappreciated benefit of eDNA sampling is that a sample originally collected to determine the presence of one species can be re-analyzed to detect additional taxa without additional field effort. We developed an eDNA assay for the western pearlshell mussel (Margaritifera falcata) and evaluated its effectiveness by analyzing previously collected eDNA samples that were annotated with information including sample location and deposited in a central repository. The eDNA samples were initially collected to determine habitat occupancy by nonbenthic fish species at sites that were in the vicinity of locations recently occupied by western pearlshell. These repurposed eDNA samples produced results congruent with historical western pearlshell surveys and permitted a more precise delineation of the extent of local populations. That a sampling protocol designed to detect fish was also successful for detecting a freshwater mussel suggests that rapidly accumulating collections of eDNA samples can be repurposed to enhance the efficiency and cost-effectiveness of aquatic biodiversity monitoring

    Major trends in mobility technology research and development: Overview of the results of the NSF-WTEC European study

    Get PDF
    Mobility technologies, including wheelchairs, prostheses, joint replacements, assistive devices, and therapeutic exercise equipment help millions of people participate in desired life activities. Yet, these technologies are not yet fully transformative because many desired activities cannot be pursued or are difficult to pursue for the millions of individuals with mobility related impairments. This WTEC study, initiated and funded by the National Science Foundation, was designed to gather information on European innovations and trends in technology that might lead to greater mobility for a wider range of people. What might these transformative technologies be and how might they arise? Based on visits to leading mobility technology research labs in western Europe, the WTEC panel identified eight major trends in mobility technology research. This commentary summarizes these trends, which are then described in detail in companion papers appearing in this special issue

    Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis

    Get PDF
    Human African trypanosomiasis (HAT), or sleeping sickness, results from infection with the protozoan parasites <i>Trypanosoma brucei</i> (<i>T.b.</i>) <i>gambiense</i> or <i>T.b.rhodesiense</i> and is invariably fatal if untreated. There are 60 million people at risk from the disease throughout sub-Saharan Africa. The infection progresses from the haemolymphatic stage where parasites invade the blood, lymphatics and peripheral organs, to the late encephalitic stage where they enter the central nervous system (CNS) to cause serious neurological disease. The trivalent arsenical drug melarsoprol (Arsobal) is the only currently available treatment for CNS-stage <i>T.b.rhodesiense</i> infection. However, it must be administered intravenously due to the presence of propylene glycol solvent and is associated with numerous adverse reactions. A severe post-treatment reactive encephalopathy occurs in about 10% of treated patients, half of whom die. Thus melarsoprol kills 5% of all patients receiving it. Cyclodextrins have been used to improve the solubility and reduce the toxicity of a wide variety of drugs. We therefore investigated two melarsoprol cyclodextrin inclusion complexes; melarsoprol hydroxypropyl-͎-cyclodextrin and melarsoprol randomly-methylated-β-cyclodextrin. We found that these compounds retain trypanocidal properties <i>in vitro</i> and cure CNS-stage murine infections when delivered orally, once per day for 7-days, at a dosage of 0.05 mmol/kg. No overt signs of toxicity were detected. Parasite load within the brain was rapidly reduced following treatment onset and magnetic resonance imaging showed restoration of normal blood-brain barrier integrity on completion of chemotherapy. These findings strongly suggest that complexed melarsoprol could be employed as an oral treatment for CNS-stage HAT, delivering considerable improvements over current parenteral chemotherapy
    • …
    corecore